

Waters of LIFE Advisor Training

Module 3A: Intro to Catchment Science I - Pollutants

May 2025

Pollutants of concern:

- Phosphate
- Nitrate
- Ammonium
- Biochemical Organic Demand (BOD)
- Sediment
- Pesticides
- Hydromorphology

The monitoring of specific pollutants contributes to the assessment of ecological status of waterbodies – WFD

Phosphate Source:

- Fertilisers (organic & chemical)
- Manure (application/timings)
- Soiled water (farmyards, roadways)
- Waste Water Treatment Plants (WWTP)
- Septic tanks

Phosphate Impact

Eutrophication = reduced oxygen levels in water

Nitrate Source:

- Fertilisers (organic & chemical)
- Grazing animals (urine patches & dung)
- Leguminous plants
- Atmospheric decomposition (ploughing)

Nitrate Impact:

Eutrophication – reduced oxygen levels

Ammonium Source:

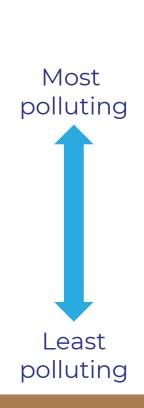
- Organic manure
- WWTP
- Plant debris or crop residue localised source
- Peat soils natural flushes from runoff/rain events

Ammonium
Impact:
Toxic to fish and other aquatic organisms

BOD represents how much oxygen is needed to break down organic matter in water

BOD Source:

- Organic fertilisers
- Grazing animals (faeces & urine)
- Farmyards (grey water)
- Wastewater (WWTP, septic tanks)
- Domestic septic tanks
- Milk & silage effluent



BOD Impact: Depleted oxygen levels needed to support aquatic organisms

Examples of BOD Values For Common Pollutants	BOD mg/l of oxygen
Milk	100,000
Silage Effluent	65,000
Pig Slurry	25,000
Cattle slurry	17,000
Dilute dairy and parlour washings	1000 – 2000
Raw domestic sewage	300

Sediment Source:

- Land drainage
- Drainage maintenance
- Channel maintenance
- Land reclamation
- Cattle poaching near watercourse
- Runoff from tillage fields
- Peat loss & poorly managed forest clear-felling
- Runoff from roads and concreted areas

Sediment Impact:

 Decline in habitat quality – particularly spawning gravels

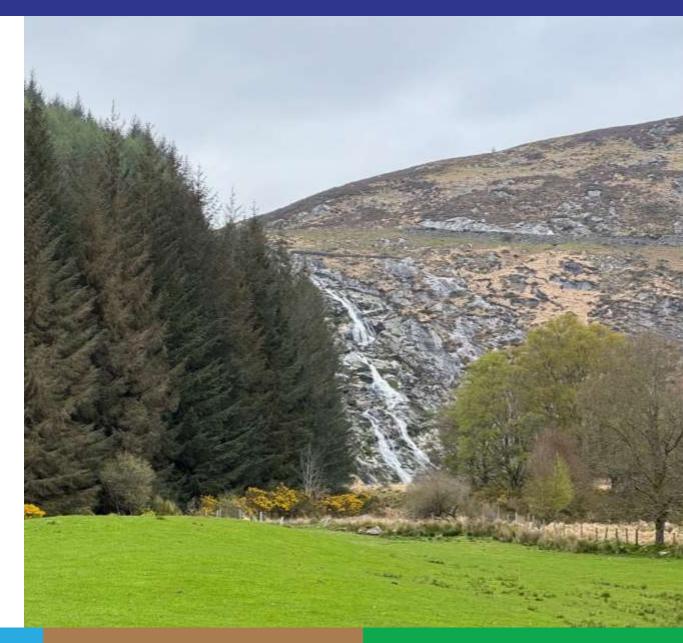
Pesticide Sources:

Sheep dip (Cypermethrin)

Crop protection (Glyphosa

Rush control (MCPA)

Pesticide Impact: Completely toxic – particularly invertebrates


Hydromorphology Impacts: Changes in natural flow &

- 1. There are multiple pollutants monitored under Water Framework Directive
- 2. Changes in the levels of these pollutants contribute towards changes water quality status in waterbodies.
- 3. Pollutants can have multiple sources not always Agriculture!

